## **Fuel Cells**



Dr. Mark C. Williams, NETL, U.S. Department of Energy

**Strategic Center for Natural Gas** 





## National Energy Technology Laboratory (NETL)



#### What We Are

- One of US DOE's 15 National Laboratories
- Government Owned and Operated
- What We Do
- Shape, fund, and manage DOE Stationary Fuel Cell Program
- U.S. largest funder of Fuel Cells
- Conduct analyses to support DG policy



# US DOE Fuel Cell & Related Federal Budgets (FY 2002)

| DOE FE Stationary Fuel Cells    | \$58.7 |
|---------------------------------|--------|
| Transportation Fuel Cells       | \$41.9 |
| Cogeneration/Fuel Cells         | \$ 5.5 |
| Hydrogen Research & Development | \$31.5 |
| DOD (CERL, NAVY)                | \$14.6 |



### **Solid State Fuel Cell**



- Electrochemical process
- Direct conversion to electricity
- $H_2$ +  $1/2 O_2 \longrightarrow H_2O$  + Electricity
- Continuous as long as fuel and air are provided



### **Planar Cell**



## **Types of Fuel Cells**

TYPE TEMP CHARGE CARRIER

Solid Oxide 2000 F O--





• Carbonate 1250 F CO<sub>3</sub>--

Phosphoric Acid 400 F
 H+





• Polymer 160 F H+

Alkaline 180 F OH-





### **Alkaline Fuel Cells**

# <mark>1970's</mark>

- Space IFC
- Vehicle Prototypes AC





- Distributed Generation
- Vehicle







## **Phosphoric Acid Fuel Cells**

## 1993

"Commercially ready"



2002

- 220 200kW units
- >40% efficiency
- \$4,500/kW
- 95-98% availability
- 4 million customers
- 4 million hours
- 99.99-99.9999 reliability







## **US DOD PAFC Program**





# Diversity of Fuel Cell Technology and Unit Sizes: Accomplished by DoD

- 1996-97 Appropriations
   Rebates awarded for 53
   ONSI (UTC-IFC) PC25 200
   kW PAFC
- 1998 Appropriations
  15 ONSI PC25 200 kW
  PAFC (1 Australia)
  90 Plug Power 7 kW PEMFC
  16 Analytic Power 3 kW
  PEMFC
  1 SWPC 300 kW SOFC
- 1999 Appropriations
  10 IdaTech 3 kW PEMFC
  23 Plug Power 7 kW PEMFC
  8 ONSI 200 kW PAFC
  1 SWPC 250 kW SOFC
  1 Fuel Cell Energy 250 kW
  MCFC
- 2000 Appropriations
  5 IFC 200 kW PAFC
  3 Fuel Cell Energy 250 kW MCFC
  1 SWPC 250 kW SOFC
  1 FCT 5 kW SOFC



### **Distributed Generation**

- New paradigm
- Transforming technology
- Distribution companies may be the new transmission companies
- Least cost approach today in some areas



## **Benefits of Distributed Generation Systems**

- Environmentally clean power
- Enhanced reliability
- Improved efficiency
- Lower costs
- Power quality
- Design flexibility
- Fuel flexibility
- Transmission savings



## **Aging Power Infrastructure**

## Fossil Electric Generation Efficiency



Source: EIA, Annual Energy Review 1996

Installed Transformer Banks in the U.S.





Source: Waukesha Electric Systems 1997

### **Distributed Generation Hurdles**

#### Technical Standards

- Interconnection with electric power system
- Electrical/Fire/Mechanical Safety
- Data/Communications
- Software
- Architecture/Modularization/Physical connection

#### System Integration R&D

- Increase component integration
- Develop cost-effective advanced plug-and-play interconnection and control technologies
- Enhance capability to integrate, interact, and provide operational benefits
  - Enterprise energy management systems and resource planning
  - Grid support, ancillary services, and load/demand management
  - Adaptive, intelligent technology

#### Mitigation of Regulatory and Institutional Barriers

- Utility interconnection and related tariffs
- Emissions regulations
- Local siting and permitting



# Near Term DG Market (Courtesy of FCE)

| US MARKET  INSTALLED CAPACITY (GW) -GROWTH RATE 1.3%, REPLACEMENT .7%     | <b>2001</b> | <b>2002</b> | <b>2003</b> | <b>2004</b> | <b>2008</b> |
|---------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
|                                                                           | 832         | 843         | 854         | 865         | 911         |
| TOTAL GENERATION MARKET (GW)                                              | 16.6        | 16.9        | 17.1        | 17.3        | 18.2        |
| DIST. GEN. MARKET (MW) -PERCENT TO TOTAL                                  | 2,662       | 3,034       | 3,415       | 4,151       | 6,738       |
|                                                                           | 16%         | 18%         | 20%         | 24%         | 37%         |
| EURO. MARKET  INSTALLED CAPACITY (GW) -GROWTH RATE 1.3%, REPLACEMENT 1.2% | <b>2001</b> | <b>2002</b> | <b>2003</b> | <b>2004</b> | <b>2008</b> |
|                                                                           | 790         | 800         | 810         | 821         | 865         |
| TOTAL GENERATION MARKET (GW)                                              | 19.7        | 20.0        | 20.3        | 20.5        | 21.6        |
| DIST. GEN. MARKET (MW) -PERCENT TO TOTAL                                  | 2,764       | 3,000       | 3,242       | 3,489       | 4,323       |
|                                                                           | 14%         | 15%         | 16%         | 17%         | 20%         |

#### **Molten Carbonate Fuel Cells**





### 2002

- Demonstration
- 47% efficiency
- \$2,000/kW
- 250kW
- Internal reforming
- FCE Manufacturing50MW/year



### 2003-2008

- Near-term DG market
- 54% efficiency
- \$1,000-1,500/kW
- 250kW-3MW

## **FCE Direct Fuel Cell Demonstrations**

#### • 250-kw units

- Bielefeld, Mercedes,
   LADWP, Thermie, Rhoen Klinikum 12, 250kW's
- Diesel Bath Maine -500kW

#### • 1-MW units

King County Digester Gas

#### 2-MW Units

Kentucky Clean Coal





#### **Tubular Solid Oxide Fuel Cells**



- 47% efficiency
- > \$10,000/kW
- 100-220kW
- 16,000 operation at 100-kW

### 2003-2008

- Near-term DG market
- 47-63% efficiency
- Homestead 15MW/yr Manufacturing facility 2003 (\$4500/kW)
- 250kW 550kW





## Fuel Cells Will Play a Role in Mitigating Climate Change

## **SWPC Tubular SOFC 100 kWe CHP System**



46% electrical efficiency
16,610 power generating hours
12,000 hours with no measureable power degradation
Emissions less than 1ppm NO<sub>x</sub>, SO<sub>x</sub> and CO and C<sub>x</sub>H<sub>y</sub>

## **SWPC Demonstration Units**



EDB/Elsam



NFCRC/Southern California Edison





1-MW GG



320-KW CC



150-kW Carbon Sequistration



#### **PEM Fuel Cells**



### 2002

- 24 32% efficiency
- > \$10,000/kW
- 1 to 250 kW
- Stationary and **Transportation Initiatives**

## 2004-2008

- Near-term DG, residential, APU, battery replacement
- 30-40% efficiency
- \$400 1,500/kW
- 50 W to 250 kW





## **North American PEM Developers**

- Ballard (Canada)
- Enable/DCH
- Avista
- General Motors
- Visteon
- IdaTech
- Schatz (Humbolt State)
- IGT/Mosaic
- Millenium
- Hydrogenics (Canada)
- Reliant (TAM)

- Nuvera
- IFC
- Dais-Analytic
- Energy Partners
- Plug Power
- H Power
- Honeywell
- Stuart (Canada)
- Gore
- Protonex



# Solid State Energy Conversion Alliance (SECA) A Way To the Future





**Core Modules for Multiple Applications** 

#### **Public Economic and Environmental Benefits**

#### **Economic**

- Nearly 80 GW/year total new/replacement electric generation global market by 2010
  - 2% growth and replacement
  - \$32 billion/year at \$400/kW
- Sales Residential 25 million homes US & 50 million homes Europe
  - \$150 billion at \$400/kW
- Potential Truck 2 GW/year APU sales
  - \$4 billion/year at \$400/kW
- Ultimate Long-term Economic Impact
  - 55 million vehicles/year global transportation market
  - \$200 billion/year at \$50/kW

#### **Environmental**

- Lower emissions
  - 60% efficient fuel cell hybrid systems cut CO<sub>2</sub> by 1/2
  - Fuel cells virtually eliminate NOx in stationary and transportation applications

# Annual U.S. Emissions Saved Using APUs in Class 8 Trucks



- Diesel fuel saved: 419 million gal/yr
- CO<sub>2</sub> reduced: 4.64 million tons/yr
- Assumes:
  - 2.1 million Class 8 trucks
  - 311,000 have overnight routes (APU candidates)



# **SECA Development: Progressive Applications**



#### 2005

- \$800/kW
- Prototypes (β-Units)3 10 kW
- Delphi, Cummins/McDermott, Honeywell, SWPC

2010

- \$400/kW
- Commercial



2015

- Vision 21 Power Plants 70-80% efficient plants
- Propulsion <\$200?/kW</li>



# **Automotive Auxiliary Power Unit**





Automotive Systems



# Core Technology Program The Technology Base





## North American SOFC Players

- Global Thermoelectric (Canadian)
- FCT (Canadian)
- IFC
- Ceramtec
- IGT
- Zetek
- Accumetrics
- MSRI
- American Fuel Cell

- SWPC (German/US)
- Delphi
- NexTech
- Honeywell
- McDermott/Cummins
- TMI
- PNNL, NETL, ANL, ORNL, LANL, LBL, LLNL
- Universities



(Note: SECA-funded in red)

## **Definition of Hybrid Fuel Cell**

- A combined cycle power generation system containing a high-temperature fuel cell plus a:
  - ✓ Gas turbine or other heat engine

or

✓Another fuel cell







## Vision 21 Hybrids









# mark.williams@netl.doe.gov

## Fuel Cell Emissions and Efficiency







# **Annual U.S. Emissions Saved Using Fuel Cells for Power Generation**



#### Assumptions:

AEO 2002 capacity addition projections

**SOFC/MCFC** efficiencies & emissions

75% capacity factor for fuel cells

| Year | <b>Additions</b> | Fuel Cells |      |  |
|------|------------------|------------|------|--|
|      | (Total)          | %          | GW   |  |
| 2005 | 68 GW            | 1%         | 0.7  |  |
| 2010 | 185 GW           | 2%         | 3.7  |  |
| 2015 | 267 GW           | 4%         | 10.7 |  |
| 2020 | 254.5 GW         | 5%         | 12.7 |  |

• By 2020:

EERE Program goal is 20 GW/yr of D.G. EPRI claims 20% of additions go to D.G.

